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a b s t r a c t

A composite refinement technique for two stationary iterative methods, one of them
contains a relaxation parameter, is introduced. Four new techniques, Jacobi successive
over relaxation (SOR) composite refinement (RJSOR), SOR Jacobi composite refinement
(RSORJ), Gauss–Seidel (GS) SOR composite refinement (RGSSOR) and SOR with GS
composite refinement (RSORGS) are compared with their classical forms. The efficient
performance of the new forms is well established and confirmed through numerical
example. The computational costs and the speed of convergence are considered. The
decrease in the required number of iteration is established through the calculation of
the spectral radius of the iteration matrices. It is illustrated that the convergence of
Jacobi and Gauss–Seidel methods engage the divergence and extend the domain of
convergence in the SOR method in the refinement technique. The calculations and graphs
are performed by computer algebra system, Mathematica.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The question of solving a large system of algebraic equations is a fundamental question in most modern modeling
ssues. Any linear system of equations can be written in matrix form as:

AX = b, (1)

where, AϵRm×m is a coefficient matrix, bϵRm is a known column of constants and X is the unknown vector. When the
matrix of the coefficients is non-singular, the exact solution of the system (1) is denoted by X = A−1b. It is well known
that direct methods for solving such systems requires about m3

3 operations which is not suitable for large sparse systems.
Iterative methods appear to be the appropriate choice especially when the convergence of the method up to the required
accuracy is achieved within m steps. One approach for the study of iterative techniques is through the splitting of the
oefficient matrix A, A = M − N , with non-singular matrix M , [1–7]

MX [k+1]
= NX [k]

+ b. (2)

The spectral radius of the iteration matrix ρ
(
M−1N

)
is a measure of convergence of the iterative technique, the method

with smaller spectral radius of its iteration matrix is known as asymptotically faster. Also, the splitting, A = D − L − U ,
here D is the diagonal part of the matrix A, and −L, −U are the strictly lower and upper triangular parts of A,
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espectively [8–10] is used in the matrix reformulation of the standard stationary iterative techniques. We are interested
n this work with three of the classical iterative methods.
acobi method [3,4,8–10]

X [k+1]
= D−1(L + U)X [k]

+ D−1b = TJX [k]
+ CJ . (3)

Gauss–Seidel method [3,4,8,9,11]

X [k+1]
= (D − L)−1UX [k]

+ (D − L)−1b = TGSX [k]
+ CGS . (4)

The SOR method [2–4,7,12–15]

X [k+1]
= M−1NX [k]

+ M−1ωb = TSORX [k]
+ CSOR, (5)

where

M = D − ωL, N = (1 − ω)D + ωU . (6)

Stationary iterative techniques are characterized by their constant iteration matrices. In general, the iteration matrix is
calculated only in the first step and used in the next consecutive steps, so from the second step, the computational costs
are at mostm2 per iteration (much smaller for sparse matrices). The concept of refinement of an iterative technique is used
to increase (double) the convergence speed of any convergent method. In this work, a composite refinement technique is
introduced. We used to convergent iterative techniques one of them contains a relaxation parameter (the SOR). The effect
of the refinement on the domain of the relaxation parameter as well as on the rate of convergence is studied. As we will
see the domain of the relaxation parameter is extended and the spectral radius of the iteration matrix is reduced.

The paper is organized as follows: In Sections (2.1, 2.2), we consider the refinement of the SOR by Jacobi method and
the refinement of Jacobi method by the SOR. In Sections (2.3, 2.4), we consider the refinement of the SOR by Gauss–Seidel
method and the refinement of Gauss–Seidel method by the SOR. In Section 3, we consider a numerical example to illustrate
and apply the theoretical treatment. In Section 4, a brief discussion about different iterative techniques and some of our
results are introduced. Section 5 contains the conclusion of this manuscript.

2. Jacobi-SOR, SOR-Jacobi, GS-SOR and SOR-GS composite refinement methods

Refinement techniques are considered in many publications [16], and the references there in. We introduce the
composite refinement approach in which two different iterative techniques are considered consecutively. The achievement
in the speed of convergence of the refinement treatments dominates the increase in computational costs appears in the
first step.
The basic idea in the refinement treatment is the use of a virtual step (X [vir]) like the case of double sweep methods or
he symmetric and unsymmetric techniques but without reversing the ordering of the equations [17–19].
he general iterative technique (2) can be written as

X [vir]
= M−1NX [k]

+ M−1b, (7)

and this virtual calculated data is used in a subsequent iteration as

X [k+1]
= M−1NX [vir]

+ M−1b, k = 0, 1, 2, . . . (8)

which can be rearranged in the form

X [k+1]
= (M−1N)2X [k]

+ (I + M−1N)M−1b, k = 0, 1, 2, . . . (9)

In the composite refinement, different iterative techniques in the consecutive sweeps are considered. We apply this
concept on the three of the simple iterative methods: Jacobi, Gauss–Seidel and SOR methods.

2.1. Jacobi-SOR (RJSOR) composite refinement

The iterative formulation of the RJSOR method can be written in the form

X [k+1]
= TRJSORX [k]

+ CRJSOR;

X [vir]
= (D − ωL)−1

[(1 − ω)D + ωU]X [k]
+ (D − ωL)−1ωb.

(10)

Where

TRJSOR = D−1(L + U)(D − ωL)−1
[(1 − ω)D + ωU],

CRJSOR = D−1
[I + (L + U)(D − ωL)−1ω]b,

(11)
and this can be obtained by direct use of the above formulas (3) and (5).
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emark 2.1. From (3), (4), (10) and (11), we find

TRJSOR = TJTSOR and CRJSOR = TJCSOR + CJ . (12)

heorem 2.2. Let AϵRm×m with aii ̸= 0, ρ(TSOR) < 1, and ρ(TJ ) < 1. Then the composite Jacobi successive over relaxation
ethod converges faster than the SOR and its domain of convergence is extended, i.e. the method can converge for some
̸∈ (0, 2).

roof. Let µj be the eigenvalues of the Jacobi iteration matrix TJ , λj be the eigenvalues of the SOR iteration matrix TSOR
nd σj be the eigenvalues of the composite Jacobi successive overrelaxation iteration matrix

det[TRJSOR] = det[D−1(L + U)(D − ωL)−1((1 − ω)D + ωU)],
m∏
j=1

σj = det[D−1(L + U)] det[(D − ωL)−1((1 − ω)D + ωU)],

|

m∏
j=1

σj| = |(
m∏

s=1

µs) (
m∏

k=1

λk)| = |

m∏
s=1

µsλs|< |

m∏
s=1

λs|

≤ (ρ(TJ ))m (ρ(TSOR))m < (ρ(TSOR))m,

det[TRJSOR] = det[D−1(L + U)(D − ωL)−1((1 − ω)D + ωU)]

= det[D−1(L + U)] det[(D − ωL)−1
] det[(1 − ω)D + ωU],

= det[D−1(L + U)] (1 − ω)m,

= (
m∏

s=1

µs) (1 − ω)m,

For the convergence of the composite Jacobi successive over relaxation method, we must have (1 − ω)m (
∏m

s=1 µs) < 1
but (min|µs|)m <

∏m
s=1 µs < (max|µs|)m < 1,

then we can write
(max|µs|)m (|1 − ω|)m < 1,

(ρ(TJ ))m (|1 − ω|)m < 1,
ρ(TJ ) |1 − ω| < 1,

−
1

ρ(TJ )
< 1 − ω <

1
ρ(TJ )

,

1 −
1

ρ(TJ )
< ω < 1 +

1
ρ(TJ )

.

Note: this will be the classical result 0 < ω < 2 if TJ is the identity due to the fact ρ(I) = 1, i.e. if TJ = I , then the
nequality

1 −
1

ρ(TJ )
< ω < 1 +

1
ρ(TJ )

ecomes

1 −
1

ρ(I)
< ω < 1 +

1
ρ(I)

,

0 < ω < 2.

Also, we have proved that TRJSOR = TJTSOR. So if TJ = I , then TRJSOR = TSOR. Which means there is no refinement. □

2.2. SOR-Jacobi (RSORJ) composite refinement

The iterative formulation of the RSORJ method can be written in the form

X [k+1]
= TRSORJX [k]

+ CRSORJ ;

X [vir]
= D−1(L + U)X [k]

+ D−1b.
(13)

here
TRSORJ = (D − ωL)−1((1 − ω)D + ωU)D−1(L + U),

CRSORJ = (D − ωL)−1
[ωI + ((1 − ω)D + ωU)D−1

]b,
(14)

nd this can be obtained by direct use of the above formulas (3) and (5).
3
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emark 2.3. From (3), (5), (13) and (14), we find

TRSORJ = TSORTJ and CRSORJ = TSORCJ + CSOR. (15)

heorem 2.4. Let AϵRm×m with aii ̸= 0, ρ(TSOR) < 1, and ρ(TJ ) < 1. Then the composite successive over relaxation Jacobi
ethod converges faster than the SOR and its domain of convergence is extended, i.e. the method can converge for some
̸∈ (0, 2).

roof. The proof is same as the proof of Theorem 2.2. □

.3. GS-SOR (RGSSOR) composite refinement

The iterative formulation of the RGSSOR method can be written in the form

X [k+1]
= TRGSSORX [k]

+ CRGSSOR;

X [vir]
= (D − ωL)−1((1 − ω)D + ωU)X [k]

+ (D − ωL)−1ωb.
(16)

here

TRGSSOR = (D − L)−1U(D − ωL)−1((1 − ω)D + ωU),

CRGSSOR = (D − L)−1
[I + U(D − ωL)−1ω]b,

(17)

nd this can be obtained by direct use of the above formulas (4) and (5).

emark 2.5. From (4), (5), (16) and (17), we find

TRGSSOR = TGSTSOR and CRGSSOR = TGSCSOR + CGS . (18)

heorem 2.6. Let AϵRm×m with aii ̸= 0, ρ(TSOR) < 1, and ρ(TGS) < 1. Then the composite Gauss–Seidel successive over
elaxation method converges faster than the SOR and its domain of convergence is extended, i.e. the method can converge for
ome ω ̸∈ (0, 2).

roof. Let τj be the eigenvalues of the Gauss–Seidel iteration matrix TGS , λj be the eigenvalues of the SOR iteration matrix
SOR and σj be the eigenvalues of the composite Gauss–Seidel successive over relaxation iteration matrix

det[TRGSSOR] = det[(D − L)−1U(D − ωL)−1((1 − ω)D + ωU)],
m∏
j=1

σj = det[(D − L)−1U] det[(D − ωL)−1((1 − ω)D + ωU)],

|

m∏
j=1

σj| = |(
m∏

s=1

τs) (
m∏

k=1

λk)| = |

m∏
s=1

τsλs| < |

m∏
s=1

λs|

≤ (ρ(TGS))m (ρ(TSOR))m < (ρ(TSOR))m,

det[TRGSSOR] = det[(D − L)−1U(D − ωL)−1((1 − ω)D + ωU)]

= det[(D − L)−1U] det[(D − ωL)−1
] det[(1 − ω)D + ωU],

= (1 − ω)m det[(D − L)−1U],

= (1 − ω)m (
m∏

s=1

τs),

For the convergence of the composite Gauss–Seidel successive over relaxation method, we must have (
∏m

s=1 τs) (1−ω)m <

1 but (min|τs|)m <
∏m

s=1 τs < (max|τs|)m < 1,
then we can write

(max|τs|)m (|1 − ω|)m < 1,
(ρ(TGS))m (|1 − ω|)m < 1,

ρ(TGS) |1 − ω| < 1,

−
1

ρ(TGS)
< 1 − ω <

1
ρ(TGS)

,

1 −
1

< ω < 1 +
1

.

ρ(TGS) ρ(TGS)

4
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N
ote: this will be the classical result 0 < ω < 2 if TGS is the identity due to the fact ρ(I) = 1, i.e. if TGS = I , then the
inequality

1 −
1

ρ(TGS)
< ω < 1 +

1
ρ(TGS)

becomes

1 −
1

ρ(I)
< ω < 1 +

1
ρ(I)

,

0 < ω < 2.

Also, we have proved that TRGSSOR = TGSTSOR. So if TGS = I , then TRGSSOR = TSOR. Which means there is no refinement. □

2.4. SOR-GS (RSORGS) composite refinement

The iterative formulation of the RSORGS method can be written in the form

X [k+1]
= TRSORGSX [k]

+ CRSORGS;

X [vir]
= (D − L)−1UX [k]

+ (D − L)−1b.
(19)

Where

TRSORGS = (D − ωL)−1((1 − ω)D + ωU)(D − L)−1U,

CRSORGS = (D − ωL)−1
[ωI + ((1 − ω)D + ωU)(D − L)−1

]b,
(20)

and this can be obtained by direct use of the above formulas (4) and (5).

Remark 2.7. From (4), (5), (19) and (20), we find

TRSORGS = TSORTGS and CRSORGS = TSORCGS + CSOR. (21)

Theorem 2.8. Let AϵRm×m with aii ̸= 0, ρ(TSOR) < 1, and ρ(TGS) < 1. Then the composite successive over relaxation Gauss–
Seidel method converges faster than the SOR and its domain of convergence is extended, i.e. the method can converge for some
ω ̸∈ (0, 2).

Proof. The proof is same as the proof of Theorem 2.6. □

3. Numerical example

In [20] a good numerical example is considered to compare the performance of Jacobi, Gauss–Seidel and SOR methods.
We use this example to extend the comparisons with RSORJ, RJSOR, RSORGS and RGSSOR methods.

Example 3.1. We consider the linear system of equations, [20]

−4.2x1 + x3 + x4 + x7 + x8 = −6.2,
x1 − 4.2x2 + x4 + x5 + x8 = −5.4,
x1 + x2 − 4.2x3 + x5 + x6 = 9.2,
x2 + x3 − 4.2x4 + x6 + x7 = 0,
x3 + x4 − 4.2x5 + x7 + x8 = −6.2,
x1 + x4 + x5 − 4.2x6 + x8 = −1.2,
x1 + x2 + x5 + x6 − 4.2x7 = 13.4,
x2 + x3 + x6 + x7 − 4.2x8 = −4.2,

(22)

with exact solution is X = (1, 2, −1, 0, 1, 1, −2, 1)T .

4. Results and discussions

The stationary iterative techniques for solving a linear system (1) are

X [k+1]
= M−1NX [k]

+ M−1b.

Jacobi, Gauss–Seidel and the SOR are the standard examples for such methods. There are methods such as MSOR, AOR,
MPAOR, SSOR, USOR which include more parameters than the SOR or use the concept of double sweep with different
attitudes. In any case there is no doubt that for large sparse systems iterative techniques are more efficient than any
5
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Fig. 1. The behavior of the spectral radius for the SOR and RSORJ methods.

Fig. 2. The behavior of the spectral radius for the SOR and RJSOR methods.

Table 1
Comparison of the spectral radius at different values of the relaxation parameter.
ρ(TJ ) = 0.952381 ρ(TGS ) = 0.895304

ω ρ(TSOR) ρ(TRSORJ ) ρ(TRJSOR) ρ(TRSORGS ) ρ(TRGSSOR)

−0.3 1.47073 0.991042 0.991042 0.898256 0.898256
1.4 0.750677 0.811681 0.811681 0.679757 0.679757
1.7 1.12563 0.745848 0.745848 0.510316 0.510316
1.83 1.28151 0.649842 0.649842 0.401246 0.401246
1.85 1.30513 0.658163 0.658163 0.413514 0.413514
2.3 2.01941 0.791626 0.791626 0.821105 0.821105
2.4 3.15701 0.812437 0.812437 0.937399 0.937399

other direct technique. In iterative techniques advantages of existence of initial estimations of the expected solution can
be considered to reduce the computational costs, which is the case in most realistic applications [11,21,22]. Iterative
techniques require a small storage in comparison with direct methods. Moreover, the storage requirements can be easily
predicted in advance. The most vital disadvantage of iterative techniques is their slow rate of convergence. The spectral
radius of the iteration matrix of the iterative technique is taken as a measure for the rate of convergence of the method.
Jacobi and Gauss–Seidel methods have constant spectral radii for each problem. The spectral radius of the iteration matrix
6
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Fig. 3. The behavior of the spectral radius for the SOR and RSORGS methods.

Fig. 4. The behavior of the spectral radius for the SOR and RGSSOR methods.

Table 2
The solution of the linear system (22) by using the RSORJ method at ω = 1.85.

k x[k]
1 x[k]

2 x[k]
3 x[k]

4 x[k]
5 x[k]

6 x[k]
7 x[k]

8

0 0 0 0 0 0 0 0 0
1 −0.453515 2.17665 −0.655397 −0.609401 0.0457753 0.237839 −2.34687 0.741098
2 0.405863 2.20524 −0.991473 −0.463579 0.590586 0.973657 −1.73893 1.31651
: : : : : : : : :
37 1 2 −0.999999 9.22 × 10−7 1 1 −2 1
38 1 2 −1 5.20 × 10−7 1 1 −2 1

of the SOR method ρ(TSOR) depends on the choice of 0 < ω < 2. There is an optimum value ωopt , for each convergent
roblem, corresponding to the minimum value of the spectral radius of the considered iteration matrix. One of the
ifficulties of using the SOR technique is the choice of ωopt . The major step in such iterative techniques (stationary iterative
echniques) is the first step in which the iteration matrix of the method is calculated and used in any subsequent step. A
efinement technique is a technique in which each step is equivalent to two steps of the original method using a virtual
hidden) step (7). In the composite refinement technique, two different iterative techniques are used (10, 13, 16 and 19), so
he convergence rate is faster than any of its components (Theorems 2.2 and 2.6). The interesting results in this work that,
hen a composite refinement of the SOR method with one of the simple methods (Jacobi or Gauss–Seidel) not only the rate
7
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Table 3
The solution of the linear system (22) by using the RJSOR method at ω = 1.85.

k x[k]
1 x[k]

2 x[k]
3 x[k]

4 x[k]
5 x[k]

6 x[k]
7 x[k]

8

0 0 0 0 0 0 0 0 0
1 2.27628 3.78148 0.729615 1.2244 2.27628 2.78148 −0.270385 2.2244
2 1.65437 2.9855 −0.007085 0.67596 1.65437 1.9855 −0.992915 1.67596
: : : : : : : : :
37 1 2 −0.999999 −3.81 × 10−7 1 0.999999 −2 1
38 1 2 −1 −2.42 × 10−7 1 1 −2 1

Table 4
The solution of the linear system (22) by using the RSORGS method at ω = 1.83.

k x[k]
1 x[k]

2 x[k]
3 x[k]

4 x[k]
5 x[k]

6 x[k]
7 x[k]

8

0 0 0 0 0 0 0 0 0
1 0.358437 2.01463 −0.873532 0.007485 0.870564 0.645723 −2.51848 0.849314
2 0.779889 1.68616 −1.29227 −0.194371 0.872178 0.86007 −2.21495 0.703561
: : : : : : : : :
16 0.999999 2 −1 2.94 × 10−9 1 1 −2 0.999999
17 1 2 −1 −3.75 × 10−7 1 1 −2 1

Table 5
The solution of the linear system (22) by using the RGSSOR method at ω = 1.83.

k x[k]
1 x[k]

2 x[k]
3 x[k]

4 x[k]
5 x[k]

6 x[k]
7 x[k]

8

0 0 0 0 0 0 0 0 0
1 2.20082 3.59406 0.571015 1.62171 2.79886 2.80447 −0.476615 2.54594
2 2.35878 3.2798 0.204841 1.16216 2.14555 2.15959 −0.822922 2.14793
: : : : : : : : :
18 1 2 −0.999999 5.01 × 10−7 1 1 −2 1
19 1 2 −1 1.75 × 10−7 1 1 −2 1

of convergence is increased but also the domain of convergence is extended (Theorem 2.2, Theorem 2.6 and Table 1). The
optimum value ωopt is slightly shifted and the corresponding spectral radius is reduced (Table 1 and (Figs. 1–4)). Table 1
and (Figs. 1–4) illustrate the performance of the four formulas RSORJ, RJSOR, RSORGS, RGSSOR in comparison with the
SOR. Seven different values of ω are selected, the SOR is divergent at six values while the four methods are convergent at
all the selected values. Also, the spectral radius of the SOR method is greater than the spectral radius of any other of the
refinement forms (both of Jacobi and Gauss–Seidel methods are convergent). The four formulas RSORJ, RJSOR, RSORGS,
RGSSOR are convergent at some values outside side the standard domain in the SOR method 0 < ω < 2. It is interesting
o notice that although both of RSORJ and RJSOR have the same behavior, the calculated values at intermediate steps are
ifferent, (Tables 2 and 3). The same behavior is noticed for RSORGS and RGSSOR, (Tables 4 and 5).

. Conclusion

The composite refinement techniques for two stationary iterative methods, one of them contains relaxation parameter,
re presented. The composite refinement techniques are the appropriate choice for solving a large system of algebraic
quations. (Theorems 2.2, 2.4, 2.6 and 2.8) prove that the new four methods (RJSOR, RSORJ, RGSSOR and RSORGS) increase
he rate of convergence, decrease the number of iterations in comparison with the classical methods. The (Figs. 1–4)
llustrate that the spectral radius behavior of the methods (RJSOR, RSORJ, RGSSOR and RSORGS) with respect to the SOR
ethod. The efficient performance of the new techniques is illustrated through the numerical Example 3.1 as shown in

Tables 2 and 3). Although the solution of the linear system (22) is divergent by SOR method at the values illustrated in
able 1, the solution of this system is convergent by the RSORJ, RJSOR, RSORGS and RGSSOR methods. Therefore, the new
echniques achieve a qualitative shift in solving large linear system of algebraic equations.
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